DI32003 - Theory of Computation

Year 24/25 Final Questions Recall

Time allowed: 2 hrs

Note that since this is a recall of the questions, some content cannot be provided. This will result in the inability to answer **Q1**, **Q2 b)** and **Q9**. Please pay more attention to the examination format of these questions and the knowledge points involved.

By WaterCoFire

1. Consider a given DFA M. For all states q_0, q_1, q_2, q_3, q_4 in M, write a string such that M ends up in that state after processing the string.

(Note: Since this is a recall, the transition diagram of ${\cal M}$ is omitted.)

2. a) Explain how to convert a NFA- ϵ to a standard NFA.

b) Consider the given NFA- ϵM . Illustrate your idea by converting it to a standard NFA M'. (Note: Since this is a recall, the transition diagram of M is omitted.)

- 3. Consider the regular language L. Prove that $L^2 = \{w_1w_2 | w_1 \in L, w_2 \in L\}$ is regular. You may not directly use the properties of regular languages to prove this.
- 4. Consider the regular expressions $(rs)^*$ and r^*s^* . Are these two regular expressions the same? Please provide proof or a counterexample.
- 5. a) Describe the Pumping Lemma.

b) Prove that $L = \{0^n 1^m | n > m\}$ is not regular.

- 6. Consider the language $L = \{0^i 1^i 2^i | i > 0\}$. a) Give an implementation-level description of a one-way TM that accepts this language. b) Explain how a 2-tape TM can accept this language faster.
- 7. Consider languages L_1, L_2, L_3 and TMs M_a, M_b, M_c, M_d . It is known that M_a and M_b do not halt on all inputs, while M_c and M_d halt on all inputs, and $L_1 = L(M_a) = L(M_c)$, $L_2 = L(M_b)$, $L_3 = L(M_d)$. Please indicate which of the languages L_1, L_2, L_3 are:

a) Partially decidable?

b) Totally decidable?

c) Impossible to determine whether it is partially decidable or totally decidable?

And give your explanations.

- 8. a) Define the NP class.
 - b) Define the NP-Complete class.

c) What is the relationship between these two classes?

9. Consider six unknown languages A, B, C, D, E, F, a NP-Complete language L_1 , and a language L_2 in class P. Based on the given polynomial-time reduction relations between them, determine the complexity classes to which A, B, C, D, E, F belong.

(Note: Since this is a recall, all reduction relations are omitted. There are approximately 8 reduction relations, e.g., $B \propto L_1$, $A \propto C$, etc. $A, B, C, D, E, F, L_1, L_2$ all have their own names in the original problem, such as *Horse*, *Camel*, etc., but these are their aliases here.)